相变储能材料开发与封装技术研究进展

无锡市永真铝业科技有限公司  2023-10-31 10:35:46 作者:SystemMaster
       随着全球经济的快速发展,能源需求快速增长。然而,化石燃料能源快速消耗不仅引发了能源危机,同时造成了二氧化碳、氮氧化物、硫氧化物的大量排放,严重破坏了生态环境。因此,节能降耗减排已成为现阶段能源领域的发展目标。

       以风电、光电为代表的新能源发电装机总量迅速增长,但是新能源发电的波动性对电网的冲击也导致了大面积的弃风、弃光现象。基于此,耦合新能源发电的储能技术近年来得到了广泛关注,其能够克服风光发电波动性的不利影响,显著提高能源利用效率,对于“双碳”绿色发展目标的实现具有重要意义。

       储能是指通过介质或设备把能量以某种形式存储起来,需要时再以特定形式释放出来的过程。其中,热储能亦称为储热,是重要的储能形式之一。热储能可以与光热发电、热电联产、风力发电耦合,实现电力灵活调峰、清洁供热和清洁能源消纳,另外在冷链运输、智能建筑方面也具有重要的应用潜力。

       热储能的市场发展潜力巨大,2020年全球热储能系统装机约234 GW·h,据国际可再生能源署测算,到2030年,全球热储能规模将增长3倍。热储能分为显热储能、相变储能(或称为潜热储能)和热化学储能3种方式。

       为了进一步提高热储能系统的效率,不同研究机构针对各类热储能材料和相关技术的开发开展了大量的研究工作,特别是在相变储能材料的开发与封装方面有了重要进展。

       本文首先对比了不同热储能技术的特点,然后针对基于相变储能的材料开发和封装技术发展现状进行了详细论述,对相变储能技术发展面临的挑战和今后的发展方向进行了展望。

热储能技术
       热储能是指将热能储存在特定的介质中,并在需要时转化为电能或其他形式能源的技术。显热储能利用材料的吸热升温和放热降温过程来实现储热,具有材料来源丰富、价格低廉、技术简单、成熟度高等优势。显热储能材料有液体和固体2类,液体材料主要为水,固体材料主要为砾石和土壤。受限于储能材料能量密度和热导率较低的性质,显热储能技术存在储能周期短、储热量小、无法保持恒温等缺点,无法满足未来大规模跨季节热储能系统的应用需求。

       相变储能主要利用材料的相变过程潜热来储存和释放热量,因此又称为潜热储能。相变过程中材料自身温度几乎维持不变,相变材料冻结时以潜热的形式释放大量的能量,并在熔化时直接从环境中吸收等量的能量。相比于显热储能,相变储能过程更加可控,材料储能密度也更大,储能周期更长,并且能够满足供热或供冷的需求。

       但是相变材料的价格较显热储能材料更高,相变储能的技术成熟度也不如显热储能。现有的相变材料种类繁多,相变储能的储热量主要与相变材料的性质有关,受外界条件影响较小,因此相变储能的关键在于强化材料自身导热能力和系统对外换热能力。此外,相变材料还需要具备稳定的化学性能、较强的热稳定性、环境污染小、无腐蚀性等特点。

       热化学储能利用可逆的吸、放热化学反应进行储能,能量以化学键的形式存储在化学材料中,化学键断裂则释放能量。热化学储能材料主要包括金属氢化物、氧化物、氢氧化物、过氧化物、碳酸盐、硫酸盐等。

       相比于前两种蓄热储能方式,热化学储能储热密度大,可以长距离运输,跨季节储存,并且储存稳定,热量损失低。然而,热化学储能技术复杂度也更高,且面临循环效率低、运维要求高、反应条件苛刻、储能体系寿命短、储能材料对设备的腐蚀性大、一次性投资高等问题。

       此外,热化学储能正向和逆向反应通常所需的温度、压力等反应条件有较大差别。现阶段,热化学储能技术还处在实验室研究阶段。

相变材料
       由于相变储能温度基本恒定,便于控制,规模化应用潜力巨大,当前研究多聚焦于不同场景下的相变材料。相变材料是指在某一特定温度下发生物理相态变化,以实现能量存储和释放的潜热储能材料。

       相变温度、潜热、比热容、热导率等是表征相变材料的重要性能指标。相变温度决定了相变储能的应用场景,典型相变材料石蜡、脂肪酸、多元醇、酯、烷烃、冰、结晶水合盐、金属合金、熔融盐的性质见表1。

       相变材料种类繁多,通常有按照相态、组成成分、相变温度3种分类方式。按照相态变化可以分为固-气、液-气、固-固和固-液相变材料。固-气和液-气相变材料在相变过程中体积变化较大,实际应用中会面临较大的安全问题。

       固相变材料是通过其晶体结构变化实现热量的吸收或释放,实际能量转化过程中并不存在相态的变化。例如,季戊四醇、高密度聚乙烯、Li2SO4等。固-固相变材料的潜热较低,且不适合与其他材料制备复合相变材料,因此规模化应用潜力较低。

       相比之下,固-液相变材料在相变过程中体积变化不明显,相变潜热比固-固相变要高,规模化应用的潜力更大。水合盐、石蜡是常见的固-液相变材料。但是,固-液相变材料在相变过程中有泄露的风险,循环利用效率低。

       相变材料按照组成成分可以分为无机相变材料(无机盐、无机盐水合物、冰、金属合金等)、有机相变材料(石蜡、有机酸、多元醇等)和共晶相变材料(有机和无机材料之间共晶物)。

       无机相变材料廉价易得且热导率较高,但容易发生相分离,循环稳定性较差;相比之下,有机相变材料过冷度低,性能较稳定,相变温度较低,但通常热导率较低。共晶相变材料通过多种材料共混形成,其相变温度通常低于所有原料的相变温度,因此可以通过组分调变来控制共晶材料的相变温度,满足不同储能场景的温度要求。

       相变材料按照相变温度可以分为低温(<100℃)、中温(100~250℃)、高温(>250℃)相变材料。

       中低温相变材料包括硅藻土、膨胀蛭石和膨胀珍珠岩等。高温相变材料主要为熔融盐、金属合金等。其中,熔融盐具有比热容高,对流传热系数高,热稳定性高,饱和蒸气压低,黏度低和价格低的优势,是大规模中高温储热技术的较为合适的选择。

       商用光热发电项目通常使用二元硝酸熔融盐作为储热材料,最高储热温度为565℃。全球投运的熔融盐储能项目累计装机3.4 GW,我国熔融盐储能装机已达0.5 GW。